Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration
نویسندگان
چکیده
Track induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.
منابع مشابه
Modeling and Optimization of EMS Maglev Tracks to Avoid Track- Induced Self-Excited Vibration
متن کامل
Optimal design of a vibration absorber for tremor control of arm in Parkinson's disease
Because the underlying physiology of pathological tremor in a Parkinson's patient is not well understood, the existing physical and drug therapies have not been successful in tremor treatment. Different mathematical modeling of such vibration has been introduced to investigate the problem and reduce the existing vibration. Most of the models have represented the induced vibration as a sinusoida...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملAn Analytical Model for Predicting the Convergence Behavior of the Least Mean Mixed-Norm (LMMN) Algorithm
The Least Mean Mixed-Norm (LMMN) algorithm is a stochastic gradient-based algorithm whose objective is to minimum a combination of the cost functions of the Least Mean Square (LMS) and Least Mean Fourth (LMF) algorithms. This algorithm has inherited many properties and advantages of the LMS and LMF algorithms and mitigated their weaknesses in some ways. The main issue of the LMMN algorithm is t...
متن کاملEffect of Rail Corrugation on the Amount of Train Induced Vibrations near a Historical Building
The evaluation and control of the trains induced vibrations needs even more attention in the case of underground tracks which passes near to monuments and historical sites. The rail corrugations which occur due to the wheels’ impulse loads during the operation period of underground railway tracks, usually amplify the ground borne noise and vibration. In the current study, the mentioned phenomen...
متن کامل